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Estimation of the number of signals impinging on an array of sensors, also known as source enumeration,
is usually required prior to direction-of-arrival (DOA) estimation. In challenging scenarios such as
the presence of closely-spaced sources and/or high level of noise, using the true source number for
nonlinear parameter estimation leads to the threshold effect which is characterized by an abnormally
large mean square error (MSE). In cases that sources have distinct powers and/or are closely spaced,
the error distribution among parameter estimates of different sources is unbalanced. In other words,
some estimates have small errors while others may be quite inaccurate with large errors. In practice,
we will be only interested in the former and have no concern on the latter. To formulate this idea, the
concept of effective source number (ESN) is proposed in the context of joint source enumeration and DOA
estimation. The ESN refers to the actual number of sources that are visible at a given noise level by a
parameter estimator. Given the numbers of sensors and snapshots, number of sources, source parameters
and noise level, a Monte Carlo method is designed to determine the ESN, which is the maximum number
of available accurate estimates. The ESN has a theoretical value in that it is useful for judging what makes
a good source enumerator in the threshold region and can be employed as a performance benchmark of
various source enumerators. Since the number of sources is often unknown, its estimate by a source
enumerator is used for DOA estimation. In an effort to automatically remove inaccurate estimates while
keeping as many accurate estimates as possible, we define the matched source number (MSN) as the
one which in conjunction with a parameter estimator results in the smallest MSE of the parameter
estimates. We also heuristically devise a detection scheme that attains the MSN for ESPRIT based on
the combination of state-of-the-art source enumerators.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Direction-of-arrival (DOA) estimation of signals impinging on
an array of sensors is a fundamental problem in array process-
ing [1], ranging from radar, sonar to wireless communications and
medical imaging. Estimating the number of source signals from
noisy measurements, also called source enumeration, is a required
task prior to applying DOA estimation methods such as maximum-
likelihood estimator (MLE), estimation of signal parameters via
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rotational invariance techniques (ESPRIT) [2], multiple signal clas-
sification (MUSIC) [3] and principal-singular-vector utilization for
modal analysis (PUMA) [4].

The conventional performance metric for source enumeration
is the probability of correct detection (PoD) [5–8]. The underlying
premise of using PoD as the performance measure is that the true
signal number is always the optimal choice. However, in challeng-
ing scenarios where closely-spaced sources are present and/or the
signal-to-noise ratio (SNR) is low, using the true signal number for
subsequent estimation incurs abnormally large mean square error
(MSE) of the estimated parameters.

Fig. 1 illustrates the typical composite MSE performance curve
for nonlinear parameter estimation [9]. In the asymptotic region of
high SNRs, the estimates are located in the neighborhood of the
true parameters and the resultant estimation errors are small. Be-
low a specific SNR called the threshold point, the MSE of the non-
linear parameter estimates departs from the Cramér–Rao bound
(CRB) and rises rapidly. As the SNR decreases, the MSE rises until
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Fig. 1. Typical composite MSE curve for nonlinear parameter estimation [9].

it reaches a stable maximum value. The SNR at which the MSE en-
ters this steady state of futility is called the no information point.

In the threshold region corresponding to closely-spaced sources
and/or distinct signal powers, the estimation errors among sources
are unevenly distributed: some estimates are centered about the
true parameters and carry small or local errors [10], whereas other
estimates carry random or global errors [10]. The latter estimates,
also known as outliers [11,10], cause the threshold effect.

In practice, we are only interested in the parameter estimates
with small errors but have no concern on the outliers. To for-
mulate this idea, we propose the adaptive source number in an
effort to remove unwanted outliers while keeping the accurate es-
timates. In particular, we have developed the concepts of effective
source number (ESN) and matched source number (MSN) by con-
sidering the source enumeration and subsequent DOA estimation
as a whole. The ESN refers to the actual number of sources that
are visible at a given noise level by a certain parameter estima-
tor. It is an indicator of how many parameter estimates returned
by a parameter estimation scheme are accurate. The ESN is a theo-
retical concept that depends on the numbers of sensors and snap-
shots, number of sources, signal parameters and noise level, and
can be determined by Monte Carlo simulation. It can be employed
as a performance benchmark of various source enumerators and
is useful for understanding what makes a good source enumer-
ator in the threshold region. In practice the number of sources
is often unknown, and instead its estimate by a source enumer-
ator is used for DOA estimation. A good choice of a source number
for a specific parameter estimation scheme varies and is applica-
tion dependent. In this work, we focus on the scenario where false
alarm entails much higher price than missed detection and hence
under-enumeration is preferred, and formulate a close-to-generic
definition of MSN whose combination with ESPRIT automatically
removes unwanted outliers while keeping as many accurate esti-
mates as possible. Moreover, we propose a detection scheme that
attains the MSN in the threshold region based on the combination
of state-of-the-art source enumerators [5,12–14,6,8].

It is worth noting that similar attempts have also been made
in the literature. In [15], a detection method biased toward over-
enumeration is designed to cater to radar imagery applications,
where it is preferable to overestimate the number of harmonic
components than underestimation. However, joint source enu-
meration and DOA estimation is not considered, and the extent
of over-enumeration is not analyzed. More importantly, in our
point of view underestimation should be preferred in a wide
range of applications for challenging scenarios such as low SNR
and/or presence of closely-spaced sources, since using an overes-
timated source number yields useless inaccurate parameter esti-
mates which entail additional costs. In [16], a similar joint source
enumeration and parameter estimation solution has been exploited
based on the combination of the minimum description length
(MDL) [5] criterion and ESPRIT for multipath time delay acqui-
sition. Nevertheless, the scheme is based on a very specific cost
function of the parameter estimates, and the combination of MDL
and ESPRIT is not sufficiently justified.

The underlying principles of ESN and MSN proposed in our
work are also related to multi-model approach [17–21]. Differ-
ent from the traditional single-model approach to model selec-
tion, where only one model is considered as correct and selected
whereas all other models are ignored, in the multi-model ap-
proach, all fitted models are combined in a weighted manner ac-
cording to their posterior likelihoods. This leads to the idea of
model averaging that can be used for modeling and prediction.
That is to say, our proposed model can be considered as a spe-
cial case of multi-model approach. Our proposal shares similar
idea to multi-model approach in the sense that alternative mod-
els (namely, underestimated number of sources) are considered in
addition to the exact model (true number of sources).

The reminder of this paper is organized as follows. In Section 2,
the data model for DOA estimation is formulated. In Section 3, we
propose the concept of the ESN as well as a procedure to identify
it using Monte Carlo simulation. In Section 4, we define the MSN,
and design a detection scheme that can automatically attain the
MSN. Simulation results are provided in Section 5 to evaluate the
validity of the proposed concepts and detection scheme. Finally,
conclusions are drawn in Section 6.

2. Data model

Consider a scenario where d far-field narrowband sources are
impinging on a uniform linear array (ULA) of M sensors. For sim-
plicity, we assume that the array and emitters are coplanar so that
the DOA is characterized by the azimuth angle only.

The complex baseband output of the receive antennas is ex-
pressed as

X = A(θ)S + Z , (1)

where A(θ) = [a(θ1), . . . ,a(θd)] ∈ C
M×d is the array steering

matrix, and a(θi) = [1, e j2πr sin(θi)/λ, . . . , e j(M−1)2πr sin(θi)/λ]T , i =
1, . . . ,d, is the array steering vector that models the array re-
sponse to a unit waveform from a certain direction. Here, θi ∈
[−π/2,π/2] is the DOA of the i-th source, measured relative to
the array normal direction, r is the inter-element spacing of the
receiving antenna array, and λ denotes the carrier wavelength.
The μi = 2πr sin(θi)/λ, i = 1, . . . ,d, is referred to as the spatial
frequency. We assume that A(θ) has full column rank of d and
d < min(M, N). Furthermore, S = [sT

1 , . . . , sT
d ]T ∈ C

d×N contains
the samples of all sources, and N is the number of snapshots.
The Z ∈C

M×N is the noise matrix collecting uncorrelated ZMCSCG
samples with variance of σ 2

z . The noise is assumed to be uncorre-
lated with the signal.

Without loss of generality, in the sequel we use the follow-
ing assumption: 1) r = λ/2 and hence μi = π sin(θi) ∈ [−π,π ];
2) The samples of the i-th source si , i = 1, . . . ,d, are generated
from zero-mean circularly symmetric complex Gaussian (ZMCSCG)
random process with variance of σ 2

si
and the samples of different

sources are uncorrelated with each other; 3) The noise has unit
variance, namely, σ 2

z = 1.

2.1. Integration of source enumeration with parameter estimation

Since the ESPRIT is a closed-form parameter estimator that is
accurate and computationally efficient, it is used for frequency es-
timation throughout the paper.

The ESPRIT algorithm uses the signal subspace to estimate the
spatial frequencies. The first step is to compute the eigenvalue de-
composition of the sample covariance matrix
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Fig. 2. Histogram of joint frequency estimate pair of two sources. M = 10, N = 20,d = d̂ = 2. σ 2
s1

= σ 2
s2

= 0.1, θ = [0,5]◦ .
R̂ X = 1

N
X XH ∈ C

M×M , (2)

where H represents the Hermitian transpose. The d̂ eigenvectors
associated to the d̂ largest eigenvalues, where d̂ denotes the es-
timated source number, are assumed to form the signal subspace
U d̂ .

The shift invariance equation then takes the following form:

J 1U d̂Φd̂ ≈ J 2U d̂, (3)

where Φd̂ ∈ C
d̂×d̂ is the unknown matrix to be solved. The above

sets of equations are overdetermined and can be solved by the
least squares method.

From Φd̂ , the spatial frequencies are estimated as

μ̂i = arg(φi), i = 1, . . . , d̂, (4)

where φi denotes the i-th eigenvalue of Φd̂ .

3. Effective source number

Suppose that the true number of signals d is passed to ES-
PRIT, and denote the resultant d frequency estimates as μ̂1, . . . , μ̂d ,
where μ̂i , i = 1, . . . ,d, is the estimate of the spatial frequency of
the i-th source, namely, μi .

To illustrate the concept of ESN, we consider a scenario with
d = 2 equal-power and closely-spaced sources. Other parameter
settings are M = 10, N = 20, d = d̂ = 2, and σ 2

s1
= σ 2

s2
= 0.1. 1000

Monte Carlo (MC) trials are conducted. In Fig. 2, the histogram of
the joint frequency estimate pair (μ̂1, μ̂2) is shown. Note that in
almost all trials only one estimate is accurate while the other one
has random errors. This indicates that only one source is visible
by ESPRIT. This is due to the fact that the frequency resolution
of ESPRIT is limited. For two closely-spaced sources corrupted by
higher levels of noise, their small angular separation becomes in-
visible and they merge to one.

Loosely speaking, the ESN, denoted here as deff, refers to the
number of signals that are actually visible at a given noise level by
a certain parameter estimation scheme. Formally, it is defined as
the number of accurate elements within the vector of parameters
estimated when the true source number d is used for parameter
estimation. The ESN is a function of the numbers of sensors M
and snapshots N , number of sources d, the powers and DOAs of
d sources, and noise level. It is evident that in the asymptotic re-
gion deff = d while in the no information region deff = 0. In the
threshold region, deff falls between 0 and d. In the next section,
we propose an algorithm to determine the ESN in the threshold
region.

The theoretical value of ESN lies in that it is an indicator of
the maximum number of available accurate parameter estimates,
which helps us judge whether a source enumerator is good or not
in the threshold region. As a future research direction, we plan
to derive the analytical expression of the ESN and to design a
source enumerator that can return a source number estimate fit-
ting well with the ESN. This has practical significance in that with
the knowledge of ESN, we may be able to decide which parameter
estimates are accurate.

3.1. Proposed algorithm for identifying effective source number

The proposed algorithm relies on the empirical observation that
the global errors can be approximated by random interval errors
that are uniformly distributed over a certain range of values [9].

For two closely-spaced sources with equal power, however, in
the threshold region the random error which is the characteris-
tic of an outlier is contained in the parameter estimates of both
sources. Fig. 3 shows the individual histograms of the frequency
estimates μ̂1 and μ̂2, where the parameter settings are the same
as those in Fig. 2. We see that although an outlier has been rec-
ognized from Fig. 2, Fig. 3 indicates that neither estimate has an
approximate uniform distribution in [−π,π ].

To tackle this, in each MC trial we order the d = 2 frequency
estimates in terms of accuracy such that

|μ̂i1 − μi1 | � |μ̂i2 − μi2 |, (5)

where {i1, i2} is a permutation of {1,2}. Hereafter μ̂i1 and μ̂i2 are
referred to as accurate and inaccurate estimates.

The histograms of the accurate and inaccurate estimates are
plotted, respectively, at the top and bottom of Fig. 4. Note that the
inaccurate estimate is now approximately uniformly distributed
and hence the outlier can be readily discovered.

As the SNR continues to decrease, the number of outliers is ex-
pected to increase from 1 to 2. Indeed, for an SNR of −30 dB,
the union of the two estimates approximately obeys the uniform
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Fig. 3. Histograms of frequency estimates of individual sources. The parameter settings are the same as those in Fig. 2.

Fig. 4. Histograms of accurate and inaccurate frequency estimates by ESPRIT. The parameter settings are the same as those in Fig. 2. (Top: accurate; bottom: inaccurate.)
distribution, as shown at the bottom of Fig. 5. Note that neither of
the accurate and inaccurate estimates alone follows the uniform
distribution since they are ordered estimates and do not corre-
spond to the sources. Instead, the accurate estimate is subject to
a super-uniform distribution which exhibits a convex profile, while
the inaccurate one is subject to a sub-uniform distribution with a
concave profile.

It is worth mentioning that similar results are also obtained
for multiple-source scenarios and for widely-spaced sources with
imbalanced powers. In general, when dol outliers are present, the
union of the dol least accurate estimates approximately follows the
uniform distribution. Based on this observation, we propose an al-
gorithm to identify the ESN by the MC method.

Given the numbers of sensors M and snapshots N , number of
sources d, source powers and spatial frequencies μ1,μ2, . . . ,μd ,
and noise level, the algorithm for identifying the ESN proceeds in
the following steps.
1) MC simulation. Obtain Q random realizations of the signal-
plus-noise measurement X ∈ C

M×N according to (1) by vary-
ing the source samples and noise. For the q-th realization,
q = 1, . . . , Q .
a) Pass d to ESPRIT to obtain the frequency estimates of d

sources, denoted as μ̂
(q)
1 , . . . , μ̂

(q)

d .
b) Order the d frequency estimates in terms of accuracy as

μ̂
(q)

i1
, . . . , μ̂

(q)

id
such that

∣∣μ̂(q)

i1
− μi1

∣∣ � · · · � ∣∣μ̂(q)

id
− μid

∣∣, (6)

where {i1, . . . , id} is a permutation of {1, . . . ,d}.
To reduce the statistical error, the number of MC trials Q
should be sufficiently large, typically of the order of 1000.

2) Define the k-th (k = 1, . . . ,d) set of estimates as
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Fig. 5. Histograms of accurate and inaccurate frequency estimates by ESPRIT and their union. σ 2
s1

= σ 2
s2

= 0.001. Other parameter settings are the same as those in Fig. 2.
(Top: accurate; middle: inaccurate; bottom: union.)
Ωk =
Q⋃

q=1

{
μ̂

(q)

ik
, . . . , μ̂

(q)

id

}
. (7)

Test the goodness of fit of each set of estimates for uniform
distribution using the chi-squared test. First, divide [−π,π ]
into l equally-spaced intervals, and then calculate the chi-
squared statistic [22,23]:

χ2 =
l∑

i=1

( f i − Q /l)2

Q /l
= l

Q

l∑
i=1

f 2
i − Q , (8)

where f i is the observed number of estimates that falls within
the i-th interval. To maximize the power of the test, l is set
as [22]

l = 4 5

√
2(Q − 1)2

γ 2
, (9)

where γ is determined from

∞∫
γ

1√
2π

exp

{
− y2

2

}
dy = α, (10)

with α being the level of significance whose typical values is
1%, 5% or 10%.
The set of estimates with the smallest χ2 is closest to being
uniformly distributed.

3) Supposing Ω j has the best fit for uniform distribution, the
number of outliers is dol = [d − ( j − 1)], and the ESN is
deff = ( j − 1).

Finally, we illustrate how to identify the threshold SNR and no
information SNR, which is required in determination of the ESN
and MSN. According to [24], the theoretical MSE expression of the
ESPRIT in the asymptotic region is derived as

MSEtheo =
∑d

i=1 ‖eH
i (A↑† I↑

M − A↓† I↓
M)‖2 R−1

S (i, i)σ 2
z

2N K
, (11)

where ei is a d × 1 vector with 1 in the i-th position and 0 other-
wise, I M is the M × M identity matrix, R S is the signal covariance
matrix, † stands for the Moore–Penrose pseudo-inverse, [·]↑ de-
notes a matrix with the first row deleted, and [·]↓ denotes a matrix
with the last row deleted. Hence, the threshold SNR is identified as

SNRth = min SNR st.
√

MSEempi(SNR) >
√

MSEtheo(SNR) + η,

(12)

where the SNR is defined as

SNR =
∑d

i=1 σ 2
si
/d

σ 2
z

. (13)

MSEempi(SNR) denotes the empirical MSE obtained by MC simula-
tion, and η denotes the preset deviation-tolerance for the estima-
tion error.

To identify the no information SNR, consider that the MSE of
ESPRIT in the no information region can be well approximated by
the one in noise-only case, denoted here as MSEnoise. Consequently,
the no information SNR is identified as

SNRni = max SNR st. MSEempi(SNR) < (1 − ρ)MSEnoise, (14)

where MSEnoise denotes the empirical MSE obtained from noise-
only measurements, and ρ is a preset relative error.

4. Matched source number

In practice the number of signals d is unknown and is esti-
mated by a source enumerator. The source number estimate is
then used for DOA estimation. From Section 3, we know that in
the threshold region, when d is passed to a given parameter es-
timator, we obtain a maximum of deff accurate estimates, and
simultaneously (d − deff) outliers. Empirically, using an overesti-
mated number of signals results in the same number of accurate
estimates but more than (d − deff) outliers. For applications where
missed detection incurs much more cost than false alarm, using
the correct or overestimated source number is appropriate.

However, in applications where false alarm entails substantial
loss and missed detection is not cared, the under-enumeration is a
better choice. Empirically we observe that using an underestimated
number of signals may automatically remove unwanted outliers
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Fig. 6. Histograms of estimated frequency by ESPRIT, when the source number is underestimated as d̂ = 1. The parameter settings are the same as those in Fig. 2.
while keeping a number of accurate estimates. In Fig. 6, the pa-
rameter settings are the same as those in Fig. 2, except that an
underestimated source number, namely, d̂ = 1, is used for DOA es-
timation instead of the true one. The histogram of the resultant
frequency estimates is plotted in Fig. 6. Note that the outlier is au-
tomatically removed while an accurate estimate is obtained.

In an effort to automatically remove inaccurate estimates while
keeping as many accurate estimates as possible, we define the
MSN as the source number that results in the smallest MSE when
being passed to a parameter estimator, namely,

dmat = arg min
k=1,...,d

MSE(k), (15)

with

MSE(k) =
∑k

j=1 |μ̂ j − μi j |2
k

, (16)

where μ̂1, . . . , μ̂k are the frequency estimates obtained by passing
k to a parameter estimator, and (μ̂ j,μi j ), j = 1, . . . ,k, is the j-th
estimated-true frequency pair with {i1, . . . , ik} being a combination
of k elements out of {1, . . . ,d}.

As shown in Section 5, the MSN is equal to or comparable to
ESN, and by inputting dmat in ESPRIT the output dmat estimates
has a comparable accuracy to the deff estimates returned from in-
putting d in ESPRIT.

4.1. Design of source enumerator to attain matched source number

Since the ESPRIT is a subspace-based parameter estimation al-
gorithm, subspace-based source enumerators such as ESTimation
ERror (ESTER) [13,14], subspace-based automatic model order se-
lection (SAMOS) [25], and order estimation using principal angles
between subspaces (OE-PABS) [26] are considered as the matching
detection methods for it. In this study, the ESTER is investigated
due to the fact that it directly exploits the shift invariance prop-
erty of the signal subspace similarly to ESPRIT.

Let U k collect the k dominant left singular vectors associated to
the largest k singular values, where k is a candidate value for the
estimated number of sources, and define the residual matrix as

Ek = U ↓
Φk − U ↑

, (17)
k k
where

Φk = (
U ↓

k

)†
U ↑

k . (18)

The ESTER estimate of the number of signals is given by

d̂ESTER = arg min
k=1,...,min(M−2,N)

‖Ek‖2
2, (19)

where ‖ · ‖2 denotes the spectral norm or 2-norm of a matrix.
Note that the cost function in the ESTER criterion, namely,

‖Ek‖2
2, serves as an approximate upper bound of the MSE defined

in (16). To see this, according to Corollary 3 of [13], we have

|φ̂ j − φi j | � c‖Ek‖2, j = 1, . . . ,k, (20)

where φ̂ j is the j-th eigenvalue of Φk , φi j is the eigenvalue of Φd

that is closest to φ̂ j in least squares sense, and c is a constant that
is independent of k.

Since

|μ̂ j − μi j | �
|φ̂ j − φi j |

|φi j |
� c

‖Ek‖2

|φi j |
, (21)

and |φi j | = 1, it follows that for any 1 � k < d

MSE(k) � c2‖Ek‖2
2, (22)

where � denotes “less than or approximately equal to”. Therefore,
minimization of the ESTER cost function leads to minimization of
MSE(k) in (16) and hence help us find dmat.

The ESTER is robust against finite-sample constraint in the
sense that it works well even when the number of snapshots is
relatively small compared to the number of sensors. However, it
is sensitive to the angular separation of sources and in the pres-
ence of closely-spaced sources, has a tendency to underestimate
the number of signals. To deal with scenarios with closely-spaced
sources, we adopt its modified version:

d̂mat = arg min
k=max(1,d̂min),...,min(M−2,N,d̂max)

‖Ek‖2
2, (23)

where d̂min and d̂max are the lower and upper bounds of the can-
didate number of signals, respectively.
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For large-sample scenarios where the number of snapshots N is
much larger than the number of sensors M , we propose to estab-
lish the lower and upper bounds via the information criteria (ITCs)
based detection methods, which are derived based on the maxi-
mum likelihood principle and are optimal large-sample detectors.
In ITCs, the number of signals is determined by minimizing the
following function [5,27]:

ITC(k) = N(M − k) log

(
a(k)

g(k)

)
+ 1

2
k(2M − k)C(N), (24)

where

g(k) =
(

M∏
i=k+1


i

) 1
M−k

, (25)

a(k) = 1

M − k

M∑
i=k+1


i (26)

are the geometric and arithmetic means of the (M − k) smallest
sample eigenvalues, respectively, and C(N) is the penalty coeffi-
cient which may be a function of N .

The Akaike information criterion (AIC), MDL [5] and efficient
detection criterion (EDC) [27] as members of the family of ITCs,
have different penalty coefficients for penalizing overfitting of the
model:

AIC: C(N) = 2, (27)

MDL: C(N) = log(N), (28)

EDC: C(N) =
√

N · log
(
log(N)

)
. (29)

We see that in AIC the lightest penalty is imposed, whereas in
EDC the heaviest penalty is imposed. Consequently, the AIC is more
inclined to overestimate the number of signals, whereas the EDC
is apt to underestimation.

Therefore, we propose to adopt the following estimates as the
lower bound d̂min and upper bound d̂max:

d̂min = d̂EDC, (30)

d̂max = d̂AIC. (31)

For small-sample scenarios where M and N are comparable to
each other, the ITCs are no longer optimal. Instead, the source enu-
merators that are devised based on the large-dimensional random
matrix theory have been proven better [6–8,28] and can be used
to establish the lower and upper bounds.

5. Simulation results

The simulated data are generated according to (1). To deter-
mine the threshold and no information SNRs, η and ρ are set as
1◦ and 0.05, respectively. For given numbers of sensors and snap-
shots, number of sources, source powers and spatial frequencies,
the results are plotted for various SNRs, which are defined in (13).
For each SNR, the results represent an average of Q = 1000 inde-
pendent realizations.

First, we validate the concepts of the proposed ESN and MSN
and their determination algorithms. We consider a system where
d = 5 equal-power sources are impinging on a ULA of M = 10
elements each collecting N = 20 snapshots. The DOAs are θ =
[−90,−45,−42,−60,−70]◦ such that a pair of closely-spaced
sources is present. Fig. 7 shows the identified ESN and MSN for
various SNRs by MC simulation. Note that the ESN/MSN is equal to
the number of sources at a low noise level in the asymptotic re-
gion, and gradually decreases as the noise power increases in the
Fig. 7. Effective and matched source number versus SNR for DOA estima-
tion in the presence of closely-spaced sources. M = 10, N = 20, d = 5. θ =
[−90,−45,−42,−60,−70]◦ , η = 1◦ , ρ = 0.05.

threshold region, and finally down to zero at a high noise level
in the no information region. Moreover, the gap between the MSN
and ESN is small.

Fig. 8(a) shows the corresponding root MSE (RMSE) of the fre-
quency estimates obtained by ESPRIT. In the legend, the “Matched”
curve corresponds to the RMSE computed based on the dmat fre-
quency estimates that are returned when dmat is sent to ESPRIT,
whereas the “BEST: deff” curve corresponds to the RMSE based on
the deff most accurate frequency estimates chosen from all d fre-
quency estimates that are obtained when d is fed into ESPRIT. And
the “CRB: dmat” and “CRB: deff” curve respectively correspond to
the square root of the mean of the dmat and deff smallest diagonal
elements of the CRB covariance matrix.

The result shows that the “Matched” curve is far below that of
the total RMSE, which shows that under-enumeration indeed can
result in improved RMSE. Likewise, the RMSE of the deff most ac-
curate frequency estimates is well below that of the total RMSE,
which indicates that the outliers have been excluded from the
estimates. Furthermore, compared with the deff most accurate fre-
quency estimates using d, there is only slight decrease in estima-
tion accuracy of the dmat frequency estimates using dmat. However,
for the former, other than the deff most accurate frequency esti-
mates, (d − deff) outliers are also obtained, whereas for the latter,
the outliers have been automatically removed, leaving dmat accu-
rate estimates. As shown in Fig. 8(b), the MSN is “optimal” in a
sense that it corresponds to the smallest RMSE of the frequency es-
timates that could be obtained by inputting varying source number
in ESPRIT. Consequently, a maximum number of accurate estimates
is kept while the decline in accuracy is minimized. In this sense,
the MSN is a good match for ESPRIT.

Next, we evaluate the performance of the proposed source enu-
merator to attain the MSN. We adopt the root mean square detec-
tion error (RMSDE) as the performance measure, which is defined
as

RMSDE =
√∑Q

i=1 |d̂ − dmat|2
Q

. (32)

The RMSDEs of AIC, MDL, EDC, SAMOS, and OE-PABS are used as
the performance benchmarks.

First we consider a scenario with widely-spaced sources of
imbalanced powers: M = 10, N = 100 and d = 5. The DOAs are
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Fig. 8. RMSE of frequency estimates versus SNR in the presence of closely-spaced sources. The parameter settings are the same as that in Fig. 7.

Fig. 9. Goodness of fit between estimated source number by various source enumerators and matched source number, for a scenario with widely-spaced sources of imbalanced
powers. M = 10, N = 100, d = 5. θ = [−81,−45,−9,27,63]◦ . σ 2
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set as θ = [−81,−45,−9,27,63]◦ , and the ratio of source pow-
ers are fixed as σ 2
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1000. In Fig. 9(a) and Fig. 9(b), the mean value of the estimated
source number by different source enumerators and the RMSDE
are shown, respectively. We see that the subspace-based source
enumerators such as ESTER, SAMOS and MUSIC return source num-
ber estimates that fit much better with the MSN than that returned
by ITCs. In particular, the ESTER performs consistently better than
or comparably to other source enumerators for the whole SNRs in
the sense that its returned source number estimate has small de-
viations from the MSN.

For scenarios with the presence of closely-spaced sources, the
mean value of the estimated source number by different source
enumerators and the RMSDE are shown in Fig. 10, where the DOAs
are θ = [20,59,28,46,55]◦ and the sources have equal powers. We
see that in the presence of closely-spaced sources, the subspace-
based source enumerators such as SAMOS, ESTER and OE-PABS
tend to underestimate the MSN for high SNRs and to overestima-
tion for low SNRs. In other words, their estimated source number
is considerably deviated from the MSN. In contrast, the proposed
detection scheme, which is a combination of the ESTER and ITCs,
returns a source number estimate that fits well with the MSN, with
higher level of fitness than that of the ITCs.

6. Conclusion

In the threshold region of nonlinear parameter estimators, the
use of true source number for DOA estimation incurs large mean
square error. In the presence of closely-spaced sources and/or
severely imbalanced powers among sources, the estimation errors
are unequally distributed among the parameter estimates of differ-
ent sources. The number of signals whose parameters can be ac-
curately estimated is referred to as the ESN. Given the numbers of
sensors and snapshots, number of sources, signal parameters and
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Fig. 10. Goodness of fit between estimated source number by various source enumerators and matched source number, in the presence of closely-spaced sources. The sources
have equal powers. M = 10, N = 100, d = 5. θ = [20,59,28,46,55]◦ .
noise level, the ESN can be determined by Monte Carlo simulation.
In an effort to automatically remove the inaccurate estimates while
keeping the accurate ones, we have proposed the concept of MSN
for a parameter estimation scheme, which refers to the number of
signals that yields the smallest MSE of the parameter estimates.
Moreover, we have designed a detection scheme that can attain
the MSN for ESPRIT based on the combination of state-of-the-art
source enumerators. The proposed concepts and approaches may
be generalized to other parameter estimation schemes. As a future
research direction, we plan to derive the analytical expression of
the ESN and design a source enumerator that can return a source
number estimate with better fitness for the ESN than existing de-
tection algorithms. This has practical significance in that with the
knowledge of ESN, namely, the maximum number of available ac-
curate frequency estimates, we may be able to decide which pa-
rameter estimates are accurate.
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